Use the Product Rule to differentiate the function.

$$
f(x)=(7 x+4)\left(x^{3}-6\right)
$$

$f^{\prime}(x)=$

$$
28 x^{3}+12 x^{2}-42
$$

Use the Product Rule to differentiate the function.

$$
f(x)=x^{3} \cos (x)
$$

$f^{\prime}(x)=$

$$
3 x^{2} \cos (x)-x^{3} \sin (x)
$$

3.

Question Details
LarCalc9 2.3.005.MI.SA. [1419817]
This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Tutorial Exercise

Use the Product Rule to differentiate the function.

$$
f(x)=x^{4} \cos (x)
$$

4.

Question Details
LarCalc9 2.3.007. [1196560]
Use the Quotient Rule to differentiate the function.

$$
f(x)=\frac{x}{x^{7}+4}
$$

$f^{\prime}(x)=$

$$
\frac{4-6 \cdot x^{7}}{\left(x^{7}+4\right)^{2}}
$$

5.

Question Details
Use the Quotient Rule to differentiate the function.

$$
\mathrm{f}(\mathrm{t})=\frac{\cos (\mathrm{t})}{\mathrm{t}^{3}}
$$

$f^{\prime}(t)=$

$$
-\frac{t \sin (t)+3 \cos (t)}{t^{4}}
$$

Find $f^{\prime}(x)$ and $f^{\prime}(c)$.

$$
f(x)=\left(x^{4}+5 x\right)\left(5 x^{4}+4 x-5\right), \quad c=0
$$

$f^{\prime}(x)=$ $\left(4 \cdot x^{3}+5\right) \cdot\left(5 \cdot x^{4}+4 \cdot x-5\right)+\left(x^{4}+5 \cdot x\right) \cdot\left(20 \cdot x^{3}+4\right)$
$f^{\prime}(c)=$ \qquad -25
7.

Question Details

Find $f^{\prime}(x)$ and $f^{\prime}(c)$.

$$
f(x)=\frac{x+3}{x-1}, \quad c=6
$$

$f^{\prime}(x)=\quad-\frac{4}{(x-1)^{2}}$
$f^{\prime}(6)=$ \square $-4 / 25$
8. Question Details

Find the derivative of the function without using the Quotient Rule.

$$
\begin{gathered}
y=\frac{7}{4 x^{3}} \\
y^{\prime}=\quad-\frac{21}{4 x^{4}}
\end{gathered}
$$

9.

Question Details

Complete the table without using the Quotient Rule.
Function $y=\frac{8 x^{7 / 2}}{x}$
Rewrite $\quad \mathrm{y}=\mathrm{8} \cdot x^{\frac{5}{2}}$
Differentiate $y^{\prime}=$
$20 \cdot x^{\frac{3}{2}}$
Simplify $\quad y^{\prime}=$

$$
20 \cdot x^{\frac{3}{2}}
$$

10.

Question Details
Find the derivative of the algebraic function.

$$
f(x)=\frac{1-5 x-x^{4}}{x^{5}-1}
$$

$f^{\prime}(x)=$

$$
\frac{\left(x^{5}-1\right) \cdot\left(-5-4 \cdot x^{3}\right)-5 \cdot\left(1-5 \cdot x-x^{4}\right) \cdot x^{4}}{\left(x^{5}-1\right)^{2}}
$$

Find the derivative of the algebraic function.

$$
\begin{aligned}
& \quad \mathrm{f}(\mathrm{x})=\frac{\mathrm{x}^{3}+5 \mathrm{x}+9}{\mathrm{x}^{2}-8} \\
& \mathrm{f}^{\prime}(\mathrm{x})=\quad \sqrt{\frac{x^{4}-29 \cdot x^{2}-40-18 \cdot x}{\left(x^{2}-8\right)^{2}}}
\end{aligned}
$$

12.

Question Details
Find the derivative of the algebraic function.

$$
f(x)=x^{7}\left[1-\frac{6}{x+7}\right]
$$

$\mathrm{f}^{\prime}(\mathrm{x})=\quad x^{6} \cdot \frac{7 x^{2}+62 x+49}{(x+7)^{2}}$

Assignment Details

Name (AID): 2.3A Product and Quotient Rules (2053855)
Submissions Allowed: 5
Category: Homework
Code:
Locked: Yes
Author: Goldsworthy, William (bgoldsworthy@soroschool.org)
Last Saved: Sep 19, 2012 01:34 PM EDT
Permission: Protected
Randomization: Person
Which graded: Last

Feedback Settings
Before due date
Question Score
Assignment Score
Publish Essay Scores
Question Part Score
Mark
Add Practice Button
Help/Hints
Response
Save Work
After due date
Question Score
Assignment Score
Publish Essay Scores
Key
Question Part Score
Solution
Mark
Add Practice Button
Help/Hints
Response

