UB 1.5 (3885599)

Current Score: 0/34

Question	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total
	0/20/20/20/20/110/1 0/20/10/10/10/10/10/10/10/10/10/3																		
Points																			0/34

1. $0 / 2$ points

LarCalc9 1.5.001. [1196725]
Consider the following function.

$$
f(x)=\frac{1}{x-7}
$$

Determine whether $f(x)$ approaches ∞ or $-\infty$ as x approaches 7 from the left and from the right.
(a) $\lim _{x \rightarrow 7^{-}} f(x)$
(b) $\lim _{x \rightarrow 7^{+}} f(x)$
2. $0 / 2$ points

Consider the following function.
$f(x)=\frac{1}{(x-1)^{2}}$
Determine whether $f(x)$ approaches ∞ or $-\infty$ as x approaches 1 from the left and from the right
(a) $\lim _{x \rightarrow 1^{-}} f(x)$
(b) $\lim _{x \rightarrow 1^{+}} f(x)$
3. $0 / 2$ points

Consider the following function and graph.

$$
f(x)=8\left|\frac{x}{x^{2}-9}\right|
$$

Determine whether $f(x)$ approaches ∞ or $-\infty$ as x approaches 3 from the left and from the right.
(a) $\lim _{x \rightarrow 3^{-}} f(x)$
(b) $\lim _{x \rightarrow 3^{+}} f(x)$
4. $0 / 2$ points

Consider the following function and graph.
$f(x)=\frac{1}{x+2}$

Determine whether $f(x)$ approaches ∞ or $-\infty$ as x approaches -2 from the left and from the right.
(a) $\lim _{x \rightarrow-2^{-}} f(x)$
(b) $\lim _{x \rightarrow-2^{+}} f(x)$

0/11 points
Consider the following function.

$$
f(x)=\frac{1}{x^{2}-25}
$$

Complete the following table. (Round your answers to two decimal places.)

x	-5.5	-5.1	-5.01	-5.001	-4.999	-4.99	-4.9	-4.5
$f(x)$								

Use the table to determine whether $f(x)$ approaches ∞ or $-\infty$ as x approaches -5 from the left and from the right.
$\lim _{x \rightarrow-5^{-}} f(x)=$
$\lim _{x \rightarrow-5^{+}} f(x)=$

Use a graphing utility to graph the function to confirm your answer.

6.

0/1 points
Find the vertical asymptotes (if any) of the graph of the function. (Use n as an arbitrary integer if necessary. If an answer does not exist, enter DNE.)

$$
f(x)=\frac{3}{x^{2}}
$$

Find the vertical asymptotes (if any) of the graph of the function. (Use n as an arbitrary integer if necessary. If an answer does not exist, enter DNE.)

$$
g(x)=\frac{2+x}{x^{2}(9-x)}
$$

(smaller value)
(larger value)
8.

0/1 points
LarCalc9 1.5.022. [1197475]
Find the vertical asymptotes (if any) of the graph of the function. (Use n as an arbitrary integer if necessary. If an answer does not exist, enter DNE.)

$$
g(x)=\frac{\frac{1}{2} x^{3}-3 x^{2}+4 x}{7 x^{2}-42 x+56}
$$

Find the vertical asymptotes (if any) of the graph of the function. (Use n as an arbitrary integer if necessary. If an answer does not exist, enter DNE.)

$$
h(t)=\frac{t^{2}-4 t}{t^{4}-256}
$$

Find the vertical asymptotes (if any) of the graph of the function. (Use n as an arbitrary integer if necessary. If an answer does not exist, enter DNE.)

$$
f(x)=7 \tan (\pi x)
$$

Find the vertical asymptotes (if any) of the graph of the function. (Use n as an arbitrary nonzero integer if necessary. If an answer does not exist, enter DNE.)

$$
s(t)=\frac{6 t}{\sin (t)}
$$

Determine whether the graph of the function has a vertical asymptote or a removable discontinuity at $x=-9$. Graph the function using a graphing utility to confirm your answer.

$$
f(x)=\frac{x^{2}-81}{x+9}
$$

- vertical asymptote
- removable discontinuity

13. $0 / 1$ points

Find the limit (if it exists). (If the limit does not exist, enter DNE.)

$$
\lim _{x \rightarrow-2^{+}} \frac{1}{x+2}
$$

14.

0/1 points
LarCalc9 1.5.042. [1089600]
Find the limit (if it exists). (If the limit does not exist, enter DNE.)

$$
\lim _{x \rightarrow 9^{-}} \frac{x^{2}}{x^{2}+16}
$$

15.

0/1 points
Find the limit (if it exists). (If the limit does not exist, enter DNE.)

$$
\lim _{x \rightarrow 0^{-}}\left(x^{2}-\frac{8}{x}\right)
$$

16.

0/1 points
Use a graphing utility to graph the function and determine the one-sided limit.

$$
\begin{aligned}
& f(x)=\frac{1}{x^{2}-64} \\
& \lim _{x \rightarrow 8^{-}} f(x)
\end{aligned}
$$

A 25-foot ladder is leaning against a house, as shown in the figure below.

If the base of the ladder is pulled away from the house at a rate of 2 feet per second, the top will move down the wall at a rate given by the following equation, where x is the distance between the base of the ladder and the house.

$$
r=\frac{2 x}{\sqrt{625-x^{2}}} \mathrm{ft} / \mathrm{sec}
$$

(a) Find the rate r when x is 15 feet.

(b) Find the rate r when x is 24 feet.
\square
(c) Find the limit of r as $x \rightarrow 25^{-}$.

Assignment Details

Name (AID): UB 1.5 (3885599)
Submissions Allowed: 5
Category: Homework
Code:
Locked: No
Author: Goldsworthy, William (bgoldsworthy@soroschool.org)
Last Saved: Jun 25, 2013 07:31 PM EDT
Permission: Protected
Randomization: Person
Which graded: Last

Feedback Settings

Before due date
Question Score
Assignment Score
Publish Essay Scores
Question Part Score
Mark
Add Practice Button
Help/Hints
Response
Save Work
After due date
Question Score
Assignment Score
Publish Essay Scores
Key
Question Part Score
Solution
Mark
Add Practice Button
Help/Hints
Response

