
UB 1.4 (3885577))
------------------	---

Q	Interview 0/29 Interview 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Points 0/1 0/1 0/2 0/4 0/4 0/2 0/1 0/1 0/1 0/2 0/1 0/1 0/2 0/29	
1.	0/1 points Find the limit (if it exists). (If an answer does not exist, enter DNE.) $\lim_{x \to 6^+} \frac{6-x}{x^2 - 36}$ $\qquad \qquad $	-
2.	0/1 points LarCalc9 1.4.014. [1089603] Find the limit (if it exists). (If an answer does not exist, enter DNE.) $\lim_{x \to 9^+} \frac{ x - 9 }{x - 9}$ $\boxed{\qquad 2} 1$	-
3.	0/1 points LarCalc9 1.4.018.MI. [1335315] Find the limit (if it exists). (If an answer does not exist, enter DNE.) $\lim_{x \to 9} f(x), \text{ where } f(x) = \begin{cases} x^2 - 6x + 5 & \text{if } x < 9 \\ -x^2 + 6x + 59 & \text{if } x \ge 9 \end{cases}$	-
4.	$0/2 \text{ points}$ LarCalc9 1.4.035. [1243553] Consider the following. $f(x) = \frac{9}{x}$ Find the x-value at which f is not continuous. Is the discontinuity removable? (Enter NONE in any unused answer blanks.) $\boxed{0}$ 0;Select	-
5.	0/4 points LarCalc9 1.4.039. [1196794] Consider the following. $f(x) = \frac{4}{1 - x^2}$ Find the <i>x</i> -values at which <i>f</i> is not continuous. Which of the discontinuities are removable? (Enter your answers from smallest to largest. Enter NONE in any unused answer blanks.) $\boxed{-1}$;Select $\boxed{2}$ nonremovable} $\boxed{1}$;Select $\boxed{2}$ nonremovable}	_

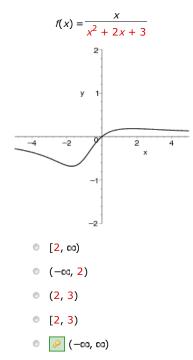
6.	0/4 points LarCalc9 1.4.044.MI. [1335275]
	Consider the following.
	$f\left(x\right) = \frac{x}{x^2 - 7}$
	Find the x-values at which f is not continuous. Which of the discontinuities are removable? (Enter your answers from smallest to largest. Enter NONE in any unused answer blanks.)
	;Select
	$-7^{\frac{1}{2}}$; Select Image: nonremovable $7^{\frac{1}{2}}$; Select Image: nonremovable
7.	0/4 points LarCalc9 1.4.048. [1196563]
	Consider the following. $f(x) = \frac{x-5}{x^2+3x-40}$
	Find the <i>x</i> -values at which <i>f</i> is not continuous. Which of the discontinuities are removable? (Enter your answers from smallest to largest. Enter NONE in any unused answer blanks.)
	-8 ;Select
	ð
8.	0/2 points LarCalc9 1.4.054.MI. [1385876]
	Consider the following.
	$f(x) = \begin{cases} -5x, & x \le 2\\ x^2 - 8x + 5, & x > 2 \end{cases}$
	Find the x-value at which f is not continuous. Is the discontinuity removable? (Enter NONE in any unused answer blanks.)
	x = 2;Select
9.	0/1 points LarCalc9 1.4.063. [1404233]
	Find the constant <i>a</i> such that the function is continuous on the entire real line.
	$f(x) = \begin{cases} 5x^2, & x \ge 1\\ ax - 6, & x < 1 \end{cases}$
10.	0/1 points LarCalc9 1.4.066. [1245626]
	Find the constant <i>a</i> such that the function is continuous on the entire real line.
	$q(x) = \int \frac{2\sin x}{x}$ if $x < 0$
	$g(x) = \begin{cases} \frac{2\sin x}{x} & \text{if } x < 0\\ a - 7x & \text{if } x \ge 0 \end{cases}$
	a = 🚺 👰 2

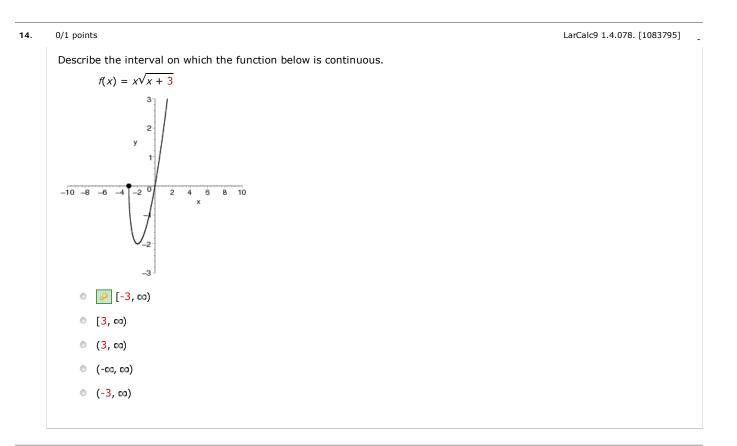
12. 0/1 points

Consider the following.

$$g(x) = \begin{cases} \frac{x^2 - a^2}{x - a} & \text{if } x \neq a \\ 6 & \text{if } x = a \end{cases}$$

Find the constant *a* such that the function is continuous on the entire real line. 93


0/1 points 13.


a =

LarCalc9 1.4.077. [1083781]

LarCalc9 1.4.068. [1083817]

Describe the interval on which the function below is continuous.

15. 0/1 points

LarCalc9 1.4.091. [1083813]

Verify that the Intermediate Value Theorem applies to the indicated interval and find the value of c guaranteed by the theorem.

 $f(x) = x^2 + 2x + 1$, [0, 5], f(c) = 16c =

16. 0/2 points

Find all values of c such that f is continuous on (- ∞ , ∞).

LarCalc9 1.4.115. [1196721]

Assignment Details