Current Score: 0/29

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 2$	$0 / 4$	$0 / 4$	$0 / 4$	$0 / 2$	$0 / 1$	$0 / 1$	$0 / 2$	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 2$

1. $0 / 1$ points

LarCalc9 1.4.010. [1245639]
Find the limit (if it exists). (If an answer does not exist, enter DNE.)
$\lim _{x \rightarrow 6^{+}} \frac{6-x}{x^{2}-36}$

2.

0/1 points
LarCalc9 1.4.014. [1089603]
Find the limit (if it exists). (If an answer does not exist, enter DNE.)

$$
\lim _{x \rightarrow 9^{+}} \frac{|x-9|}{x-9}
$$

\square
3.

0/1 points
Find the limit (if it exists). (If an answer does not exist, enter DNE.)

$$
\lim _{x \rightarrow 9} f(x), \text { where } f(x)= \begin{cases}x^{2}-6 x+5 & \text { if } x<9 \\ -x^{2}+6 x+59 & \text { if } x \geq 9\end{cases}
$$

4. $0 / 2$ points

Consider the following.

$$
f(x)=\frac{9}{x}
$$

Find the x-value at which f is not continuous. Is the discontinuity removable? (Enter NONE in any unused answer blanks.)
\square ; ---Select---
5.

0/4 points
LarCalc9 1.4.039. [1196794]
Consider the following.

$$
f(x)=\frac{4}{1-x^{2}}
$$

Find the x-values at which f is not continuous. Which of the discontinuities are removable? (Enter your answers from smallest to largest. Enter NONE in any unused answer blanks.)

$$
\begin{aligned}
& \text {; ---Select--- } \\
& \text {; ---Select--- }
\end{aligned}
$$

Consider the following.

$$
f(x)=\frac{x}{x^{2}-7}
$$

Find the x-values at which f is not continuous. Which of the discontinuities are removable? (Enter your answers from smallest to largest. Enter NONE in any unused answer blanks.)
; ---Select---
; ---Select---
7. $0 / 4$ points

Consider the following.

$$
f(x)=\frac{x-5}{x^{2}+3 x-40}
$$

Find the x-values at which f is not continuous. Which of the discontinuities are removable? (Enter your answers from smallest to largest. Enter NONE in any unused answer blanks.)
; ---Select---
; ---Select---
8. $0 / 2$ points

Consider the following.

$$
f(x)= \begin{cases}-5 x, & x \leq 2 \\ x^{2}-8 x+5, & x>2\end{cases}
$$

Find the x-value at which f is not continuous. Is the discontinuity removable? (Enter NONE in any unused answer blanks.)
$x=\quad ; \quad--$ Select---
9.

0/1 points

Find the constant a such that the function is continuous on the entire real line.

$$
f(x)= \begin{cases}5 x^{2}, & x \geq 1 \\ a x-6, & x<1\end{cases}
$$

$\mathrm{a}=$ \square

Find the constant a such that the function is continuous on the entire real line.

$$
g(x)= \begin{cases}\frac{2 \sin x}{x} & \text { if } x<0 \\ a-7 x & \text { if } x \geq 0\end{cases}
$$

$\mathrm{a}=$ \square

0/2 points

Find the constants a and b such that the function is continuous on the entire real line.

$$
f(x)= \begin{cases}7, & x \leq-3 \\ a x+b, & -3<x<4 \\ -7, & x \geq 4\end{cases}
$$

$\mathrm{a}=$
b $=$

Consider the following.

$$
g(x)= \begin{cases}\frac{x^{2}-a^{2}}{x-a} & \text { if } x \neq a \\ 6 & \text { if } x=a\end{cases}
$$

Find the constant a such that the function is continuous on the entire real line.
$\mathrm{a}=$ \square
13. $0 / 1$ points

Describe the interval on which the function below is continuous.

$$
f(x)=\frac{x}{x^{2}+2 x+3}
$$

- $[2, \infty)$
- $(-\infty, 2)$
- $(2,3)$
- $[2,3)$
- $(-\infty, \infty)$

Describe the interval on which the function below is continuous.

$$
f(x)=x \sqrt{x+3}
$$

- $[-3, \infty)$
- $[3, \infty)$
- $(3, \infty)$
- $(-\infty, \infty)$
- $(-3, \infty)$

15.

$0 / 1$ points
Verify that the Intermediate Value Theorem applies to the indicated interval and find the value of c guaranteed by the theorem.

$$
f(x)=x^{2}+2 x+1, \quad[0,5], \quad f(c)=16
$$

$\mathrm{c}=$
16. $0 / 2$ points

Find all values of c such that f is continuous on $(-\infty, \infty)$.

$$
f(x)= \begin{cases}5-x^{2}, & x \leq c \\ x, & x>c\end{cases}
$$

$c=$	(smaller value)
$c=$	(larger value)

