Current Score: 0/52

Question	1	2	3	4	5	6	7	8	9	10
	1	0	0	0	0	0				

Points $0 / 52$

Consider the following problem.
Find the distance traveled in 20 seconds by an object traveling at a constant velocity of 26 feet per second.
Decide whether the problem can be solved using precalculus, or whether calculus is required.

- The problem can be solved using precalculus.
- The problem requires calculus to be solved.

If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.
\square ft

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Tutorial Exercise

Consider the following problem.
Find the distance traveled in 29 seconds by an object traveling at a constant velocity of 13 feet per second.

Decide whether the problem can be solved using precalculus, or whether calculus is required.

If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Consider the following problem.
A bicyclist is riding on a path modeled by the function $f(x)=0.03\left(8 x-x^{2}\right)$, where x and $f(x)$ are measured in miles. Find the rate of change of elevation when $x=1$. (Round your answer to two decimal places.)

Decide whether the problem can be solved using precalculus, or whether calculus is required.

- The problem can be solved using precalculus.
- The problem requires calculus to be solved.

If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.
\square
4. $0 / 2$ points

Consider the following problem
A bicyclist is riding on a path modeled by the function $f(x)=0.02 x$, where x and $f(x)$ are measured in miles. Find the rate of change of elevation when $x=2$.

Decide whether the problem can be solved using precalculus, or whether calculus is required.

- The problem can be solved using precalculus.
- The problem requires calculus to be solved.

If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution
\square

Find the area of the shaded region.
(a)

(b)

Decide whether the problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

STEP 1: Consider the figure in part (a). Since this region is simply a triangle, you may use precalculus methods to solve this part of the problem. First determine the height of the triangle and the length of the triangle's base.
height \square units
base \square units

STEP 2: Compute the area of the triangle by employing a formula from precalculus, thus finding the area of the shaded region in part (a).
\qquad square units

STEP 3: Consider the figure in part (b). Since this region is defined by a complicated curve, the problem seems to require calculus. Find an approximation of the shaded region by using a graphical approach. (Hint: Treat the shaded region as approximately equivalent to a triangle on top of a rectangle and sum the areas of these objects.)
\qquad square units

Consider the function $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$ and the point $\mathrm{P}(4,2)$ on the graph f .
(a) Graph fand the secant lines passing through the point $P(4,2)$ and $Q(x, f(x))$ for x-values of 1,5 , and 7 .

(b) Find the slope of each secant line. (Round your answers to three decimal places.)
\square (line passing through $Q(1, f(x))$)
(line passing through $Q(5, f(x))$)
(line passing through $Q(7, f(x))$)
(c) Use the results of part (b) to estimate the slope of the tangent line to the graph of f at $\mathrm{P}(4,2)$.
\square
Describe how to improve your approximation of the slope.

- Define the secant lines with points closer to P.
- Choose secant lines that are nearly vertical.
- Choose secant lines that are nearly horizontal.
- Define the secant lines with points farther away from P.

Consider the function $f(x)=-6 x+x^{2}$ and the point $P(2,-8)$ on the graph of f.
(a) Graph f and the secant lines passing through $P(2,-8)$ and $Q(x, f(x))$ for x-values of $3,2.5,1.5$.

(b) Find the slope of each secant line.
\square (line passing through $\mathrm{Q}(3, \mathrm{f}(\mathrm{x}))$)
(line passing through $\mathrm{Q}(2.5, f(x))$)
(line passing through $\mathrm{Q}(1.5, \mathrm{f}(\mathrm{x})$))
(c) Use the results of part (b) to estimate the slope of the tangent line to the graph of f at $\mathrm{P}(2,-8)$.
\qquad

Describe how to improve your approximation of the slope.

- Define the secant lines with points closer to P.
- Choose secant lines that are nearly horizontal.
- Choose secant lines that are nearly vertical.
- Define the secant lines with points farther away from P.

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Consider the function $f(x)=-4 x-x^{2}$ and the point $P(-2,4)$ on the graph of f.

Part (a)
Graph f and the secant lines passing through $P(-2,4)$ and $Q(x, f(x))$ for x-values of $-3,-2.5,-1.5$.

Part (b)
Find the slope of each secant line.

Part (c)

Use the results of part (b) to estimate the slope of the tangent line to the graph of f at $\mathrm{P}(-2,4)$.

Describe how to improve your approximation of the slope.

Consider the figures below.
(1)

(2)

(a) Use the rectangles in each graph to approximate the area of the region bounded by $y=\sin (x), y=0, x=0$, and $x=\pi$. (Round your answer to three decimal places.)
\square figure (1)
figure (2)
(b) Describe how you could continue this process to obtain a more accurate approximation of the area.

- Continually increase the height of all rectangles.
- Continually increase the number of rectangles.
- Continually decrease the number of rectangles.
- Continually decrease the height of all rectangles

Consider the figures below.

(a) Use the rectangles in each graph to approximate the area of the region bounded by $y=5 / x, y=0, x=1$, and $x=5$. (Round your answers to three decimal places.)
\square figure (1) figure (2)
(b) Describe how you could continue this process to obtain a more accurate approximation of the area.

- Continually decrease the number of rectangles.
- Continually decrease the height of all rectangles.
- Continually increase the height of all rectangles.
- Continually increase the number of rectangles.

Assignment Details

Name (AID): 1.1 A Preview of Calculus (1920508)
Submissions Allowed: 5
Category: Homework
Code:
Locked: Yes
Author: Goldsworthy, William (bgoldsworthy@soroschool.org) Last Saved: Aug 21, 2012 03:40 PM EDT

Permission: Protected
Randomization: Person
Which graded: Last

Feedback Settings
Before due date
Question Score
Assignment Score
Publish Essay Scores
Question Part Score
Mark
Add Practice Button
Help/Hints
Response
Save Work
After due date
Question Score
Assignment Score
Publish Essay Scores
Key
Question Part Score
Solution
Mark
Add Practice Button
Help/Hints
Response

